Scientific / art field, discipline and subdiscipline | INTERDISCIPLINARY AREAS OF KNOWLEDGE Educational Sciences (Child and Educational Psychology, Sociology of Education, Political Science of Education, Economics of Education, Anthropology of Education, Neurosciences and Early Learning, Educational Disciplines) |
Abstract | U ovom diplomskom radu kroz teorijski dio se nastojao prikazati povijesni razvoj nastave matematike, usporediti položaj problemskih zadataka kroz tradicionalnu i suvremenu nastavu te se usmjeriti na suvremenu nastavu i problemske zadatke u njoj. Zatim se kroz prvi dio istraživanja željelo analizirati kako zapravo učenici rješavaju problemske zadatke odnosno koriste li pri rješavanju matematičko ili modeliranje konkretima te kakva je uspješnost učenika pri njihovu rješavanju. Dok su se kroz drugi dio istraživanja nastojali ispitati stavovi učitelja o problemskim zadacima, kakve zadatke smatraju problemskima te kako ih vrednuju odnosno čime se vode pri vrednovanju. U istraživanju je sudjelovalo 70 učenika razredne nastave kojima su podijeljeni ispiti s problemskim zadacima ovisno o razredu koji trenutno pohađaju to jest sa zadacima prilagođenima njihovu uzrastu. U drugom dijelu istraživanja provedeni su intervjui s dvanaest učiteljica koji su bili podijeljeni u tri dijela: razgovor o problemskim zadacima, prikaz zadataka kako bih vrednovale jesu li oni za njih problemski ili ne te vrednovanje nekih primjera riješenih zadataka. Analiza učeničkih ispita pokazala je kako ovisno o tipu/vrsti zadatka varira i uspješnost njegova rješavanja pa su tako učenici najmanje uspješni u rješavanju tipa zadataka s redoslijedom računskih radnji u svim razredima. Kod prvih zadataka koji su bili zadaci riječima učenici su uglavnom točno rješavali prvi dio zadatka dok bi se pogreške pojavljivale u sljedećim koracima, uspješnost rješavanja trećih zadataka je bila također niska, ali su se našla neka vrlo zanimljiva rješenja. U prvom razredu se modeliranje konkretima najviše koristilo dok se kroz sljedeće razrede sve manje pojavljivalo i prevladavalo je matematičko modeliranje. Učiteljice su kroz intervjue pokazale kako na problemske zadatke uglavnom gledaju kao na neke zadatke s riječima i logičke zadatke koje od djece zahtijevaju više razmišljanja. Ponuđene zadatke iz ispita su većinski smatrale problemskima, osim kod drugih zadataka gdje su mišljenja bila podijeljena i naposljetku se trećem dijelu intervjua je dobio uvid u načine vrednovanja. |
Abstract (english) | In this thesis, through the theoretical part, an attempt was to show the historical development of teaching mathematics, to compare the position of problem tasks in traditional and contemporary teaching, and to focus on contemporary teaching and problem tasks in it. Through the first part of the research, it was aimed to analyze how students actually solve problem tasks, that is, whether they use mathematics or modeling by drawing when solving this type of tasks, and what is the success rate of students when solving them. The second part of the research sought to examine teachers' attitudes about problem tasks, what kind of tasks they consider to be problem tasks and how they evaluate them, i.e. what they are guided by when evaluating them. Seventy students (grades one to four) participated in the research and were given exams with problem tasks depending on the grade they are currently attending, that is, with tasks adapted to their age. In the second part of the research, interviews were conducted with twelve teachers. The interviews were divided into three parts: a conversation about problem tasks, a presentation of the tasks for the teachers to evaluate whether they consider them to be problem tasks or not, and evaluation of some examples of solved tasks. The analysis of student exams showed that depending on the type of task, the success in solving it also varies, so students are the least successful in solving the type of tasks with the order of calculation operations in all grades. In the first tasks, which were word tasks, the students mostly solved the first part of the task correctly, while mistakes appeared in the following steps. The success in solving the third tasks was also low, but some very interesting solutions were found. In the first grade, modeling by drawing was used the most, while in the following grades it appeared less and less and mathematical modeling prevailed. Through the interviews, the teachers showed that they mostly consider problem tasks to be word tasks and logic tasks that require more thinking from the children. The offered tasks from the exam were seen as problem tasks by the majority of the teachers, except for the second tasks where opinions were divided. Lastly, in the third part of the interview, an insight into the methods of evaluation was obtained. |